Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Vet Entomol ; 38(1): 112-117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37850372

RESUMO

The parvorder Rhynchopthirina contains three currently recognised species of lice that parasitize elephants (both African savanna elephant Loxodonta africana and Asian elephant Elephas maximus), desert warthogs (Phacochoerus aethiopicus) and Red River hogs (Potamochoerus porcus), respectively. The Asian elephant lice and the African savanna elephant lice are currently treated as the same species, Haematomyzus elephantis (Piaget, 1869), based on morphology despite the fact that their hosts diverged 8.4 million years ago. In the current study, we sequenced 23 mitochondrial (mt) genes of African savanna elephant lice collected in South Africa and analysed the sequence divergence between African savanna elephant lice and previously sequenced Asian elephant lice. Sequence comparisons revealed >23% divergence for the 23 mt genes as a whole and ~17% divergence for cox1 gene between African savanna and Asian elephant lice, which were far higher than the divergence expected within a species. Furthermore, the mt gene sequence divergences between these lice are 3.76-4.6 times higher than that between their hosts, the African savanna and Asian elephants, which are expected for the co-divergence and co-evolution between lice and their elephant hosts. We conclude that (1) H. elephantis (Piaget, 1869) contains cryptic species and (2) African savanna and Asian elephant lice are different species genetically that may have co-diverged and co-evolved with their hosts.


Assuntos
Elefantes , Genoma Mitocondrial , Ftirápteros , Suínos , Animais , Elefantes/genética , Ftirápteros/genética , África do Sul
2.
Onderstepoort J Vet Res ; 89(1): e1-e7, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144445

RESUMO

Historically, the use of antibiotics was not well regulated in veterinary medicine. The emergence of antibiotic resistance (ABR) in pathogenic bacteria in human and veterinary medicine has driven the need for greater antibiotic stewardship. The preservation of certain antibiotic classes for use exclusively in humans, especially in cases of multidrug resistance, has highlighted the need for veterinarians to reduce its use and redefine dosage regimens of antibiotics to ensure efficacy and guard against the development of ABR pathogens. The minimum inhibitory concentration (MIC), the lowest concentration of an antibiotic drug that will prevent the growth of a bacterium, is recognised as a method to assist in antibiotic dosage determination. Minimum inhibitory concentrations sometimes fail to deal with first-step mutants in bacterial populations; therefore dosing regimens based solely on MIC can lead to the development of ABR. The mutant prevention concentration (MPC) is the minimum inhibitory antibiotic concentration of the most resistant first-step mutant. Mutant prevention concentration determination as a complementary and sometimes preferable alternative to MIC determination for veterinarians when managing bacterial pathogens. The results of this study focused on livestock pathogens and antibiotics used to treat them, which had a MIC value of 0.25 µg/mL for enrofloxacin against all 27 isolates of Salmonella typhimurium. The MPC values were 0.50 µg/mL, with the exception of five isolates that had MPC values of 4.00 µg/mL. The MPC test yielded 65.52% (18 isolates) Salmonella isolates with florfenicol MICs in the sensitive range, while 11 isolates were in the resistant range. Seventeen isolates (58.62%) of Pasteurella multocida had MIC values in the susceptible range and 41.38% (12 isolates) had an intermediate MIC value. Mutant prevention concentration determinations as done in this study is effective for the antibiotic treatment of bacterial infections and minimising the development of resistance. The MPC method can be used to better control to prevent the development of antibiotic drug resistance used in animals.


Assuntos
Antibacterianos , Pasteurella multocida , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enrofloxacina , Testes de Sensibilidade Microbiana/veterinária , Pasteurella multocida/genética , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...